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Abstract. This study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM). Four 9 

types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study 10 

came from NASA’s long lasting AMSR-E mission. Additionally three other products were obtained from the 11 

European Space Agency Climate Change Initiative (CCI). These datasets were blended based on all available 12 

satellite observations (CCI-Active; CCI-Passive; CCI-Combined). All of these products were quarter degree and 13 

daily. We applied the filter to produce a soil moisture index (SWI) that others have successfully used to estimate 14 

RZSM. The only unknown in this approach was the characteristic time of soil moisture variation (T). We examined 15 

five different eras (1997-2002; 2002-2005; 2005-2008; 2008-2011; 2011-2014) that represented periods with 16 

different satellite data sensors. SWI values were compared with in situ soil moisture data from the International Soil 17 

Moisture Network at a depth ranging from 20 to 25 cm. Selected networks included the U.S. Department of Energy 18 

Atmospheric Radiation Measurement (ARM) program (25 cm), Soil Climate Analysis Network (SCAN; 20.32 cm), 19 

SNOwpack TELemetry (SNOTEL; 20.32 cm), and the U.S. Climate Reference Network (USCRN; 20 cm). We 20 

selected in situ stations that had reasonable completeness. These datasets were used to filter out periods with 21 

freezing temperatures and rainfall using data from the Parameter elevation Regression on Independent Slopes Model 22 

(PRISM). Additionally, we only examined sites where surface and root zone soil moisture had a reasonable high 23 

lagged correlation coefficient (r>0.5). 24 

The unknown T value was constrained based on two approaches:  optimization of root mean square error 25 

(RSME) and calculation based on the NDVI value. Both approaches yielded comparable results; although, as to be 26 

expected, the optimization approach generally outperformed NDVI based estimates. Best results were noted at 27 

stations that had an absolute bias within 10%. SWI estimates were more impacted by the in situ network than the 28 
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surface satellite product used to drive the exponential filter. Average Nash-Sutcliffe coefficients (NS) for ARM 29 

ranged from -0.1 to 0.3 and were similar to the results obtained from the USCRN network (0.2 to 0.3). NS values 30 

from the SCAN and SNOTEL networks were slightly higher (0.1 to 0.5). These results indicated that this approach 31 

had some skill in providing an estimate of RZSM. In terms of root mean square error (RMSE; in volumetric soil 32 

moisture) ARM values actually outperformed those from other networks (0.02 to 0.04). SCAN and USCRN RMSE 33 

average values ranged from 0.04 to 0.06 and SNOTEL average RMSE values were higher ranging (0.05 to 0.07). 34 

These values were close to 0.04, which is the baseline value for accuracy designated for many satellite soil moisture 35 

missions. 36 

1 Introduction 37 

Soil moisture is one of the most difficult hydrologic variables to either monitor or model (Lattenmaier et al., 2015). 38 

Understanding soil moisture dynamics is critical to support many diverse applications in hydrology, meteorology, 39 

and agriculture. In the agricultural sector a fundamental limiting factor that constrains crop productivity is root zone 40 

soil moisture (RZSM). Understanding root zone moisture dynamics is important also from a water resource 41 

standpoint and is a valuable measure in drought monitoring (Bolten et al., 2010; Bolten and Crow, 2012). The 42 

dimensions of RZSM also impact other systems beyond the hydrologic cycle, most notably with the quantification 43 

of carbon fluxes within soils. Therefore, direct sensing of RZSM dynamics will bring us closer to a truer 44 

understanding of the carbon soil pool, with obvious implications for future climate change. 45 

 Given the importance of RZSM to agricultural and other applications, more effort is needed to understand the 46 

impacts of climate change associated with this critical variable. The National Aeronautics and Space Administration 47 

(NASA), European Space Agency (ESA), and other governments across the world have had a long history of 48 

supporting missions that generate remotely sensed surface soil moisture, including the Scanning Multichannel 49 

Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measurement 50 

Mission (TRMM), Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), Soil Moisture 51 

and Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), scatterometers on the European Remote 52 

Sensing satellites, which includes (SCAT) and the Advanced Scatterometer (ASCAT) to name only a few (e.g. 53 

Lakshmi et al. 1997; Wagner et al. 1999; Kerr et al. 2001; Jackson et al. 2002; Hutichson, 2003; Njoku et al, 2003; 54 

McCabe et al. 2005; Owe et al., 2008; Entekhabi et al., 2010). Passive microwave soil moisture estimate, like 55 
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AMSR-E measured the horizontal and vertical polarization temperatures in several wavelengths, which include: 56 

6.6/6.9 GHz (C-band), and 10.7 GHz (X-band), 19.3 GHz (Ku-band). In addition, the vertical polarization is 57 

examined at 36.5/37.0 GHz (Ka-band). An advantage of the more recent SMOS and SMAP missions is that they 58 

operate at a lower frequency 1.2/1.4 GHz (L-band), which has great penetrative power, especially in highly 59 

vegetated areas. In terms of the active sensors both SCAT and ASCAT operated at 5.3 GHz (C-band) and have a 60 

similar design philosophy. These sensors make sequential observations of the backscattering coefficient with six 61 

sideways looking antennas and make sequential observations of the backscattering coefficient using three polarizing 62 

antennas.  63 

 Liu et al, (2012) described the development of two extensively validated surface soil moisture products. 64 

These products were created using a harmonized dataset based on all available soil moisture retrievals; one from the 65 

Vienna University of Technology (TU Wien) based on active microwave observations (Wagner et al., 2003, Bartalis 66 

et al., 2007) and one from the Vrije Universiteit Amsterdam (VUA), in collaboration with NASA Goddard Space 67 

Flight Center Hydrological Sciences Laboratory, based on passive microwave observations (Owe et al., 2008). This 68 

effort was a part of the ESA Climate Change Initiative (CCI). The harmonization of these datasets incorporated the 69 

advantages of both microwave techniques and spanned the entire period from 1978 onward. This effort is unlike 70 

NOAA’s Soil Moisture Operational Products System (SMOPS), which was a long-term record of soil moisture 71 

based on only passive microwave data.  72 

 A long-standing goal of the soil remote sensing community is to develop techniques that can observe changes 73 

in RZSM at depths greater than 10 cm, because all of the missions described above are confined to sensing moisture 74 

only within the top 5 cm of the profile. In 2015 NASA launched the SMAP mission that had the potential to 75 

combine of the advantages of passive and active microwave retrievals to estimate soil moisture dynamics at depth. 76 

Unfortunately, early during this mission the satellite’s radar failed. Despite this setback NASA had invested 77 

considerable resources into the development of an Ensemble Kalman Filter (EnKF)-based Level 4 RZSM product 78 

for SMAP (Reichle et al., 2016) and the development of lower-frequency airborne radar systems for deeper 79 

penetration of the soil column (via the EV-1 AirMOSS project). While this work is to be commended, the limited 80 

time availability of these products precludes their use for long-term climatic trend studies. 81 

 This study used the exponential filter to leverage the longer duration CCI surface soil moisture record to 82 

produce a record of RZSM that can be compared over almost two decades (1997-2014). Wagner et al. (1999) 83 
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developed the exponential filter to examine soil moisture trends from ERS Scatterometer data focusing on the 84 

Ukraine. A later refinement of this filter included the development of a recursive version that had the virtue of a 85 

greater ease of implementation (Albergel et al, 2008). In recent years several authors have produced RZSM 86 

estimates using the exponential filter and have conduct comparisons at a range of spatial scales (Ford et al. 2014; 87 

Manfredaet al. 2014; Qiu et al. 2014; Peterson et al. 2014; Kedzior and Zawadzki, 2016). At the heart of the 88 

exponential filter method is the assumption of hydrologic equilibrium within the soil profile that makes it possible to 89 

estimate RZSM by using only surface measurements, provided that soil physical properties are known. This method 90 

also assumes that there is no loss from the root zone due to transpiration. Transfer of soil moisture from the surface 91 

to the root zone is controlled by a pseudodiffusivity term that allows both positive and negative fluxes from and to 92 

the deep layer. This approach overcame a limitation of the EnKF approach in that data assimilation is not dependent 93 

on obtaining data from a land surface model, in which there can be significant uncertainty in terms of the model 94 

parameters used to constrain water and energy balances (Kumar et al, 2009). This study presents the results of the 95 

application of the exponential filter produced using four satellite soil moisture products from 1997-2014 focusing on 96 

Continental United States (CONUS). As such this work represents a unique application of the exponential filter over 97 

a mutlidecadal time scale, which is only afforded by the long duration CCI record. 98 

2 Data 99 

2.1 Era Definitions 100 

The data examined in this study spans over 17 years. As such we compared soil moisture produced by the 101 

exponential filter over five, roughly equal eras (3-4.5 year), which were defined based on the available satellite 102 

retrievals during each era (see Liu et al. 2012). These eras included: November 27 1997-June 18 2002 (pre-AMSR-103 

E), June 19 2002-June 30 2005 (Early AMSR-E), July 1 2005-June 30 2008 (Middle AMSR-E), July 1 2008-104 

October 3 2011 (Late AMSR-E), and October 4 2011-December 31, 2014 (post-AMSR-E). The pre-AMSR-E era 105 

relied heavily on the TRMM Microwave Imager (TMI) passive observations and SCAT active retrievals that 106 

operated until 2006. In fact, the climatology of the passive dataset during this period was rescaled based on TMI 107 

data and likewise the same was true of AMSR-E during eras 2-4. During the Early AMSR-E era passive 108 

observations from the Windsat satellite came on line (Gaiser 2004). The Middle AMSR-E era was a time of 109 

transition in terms of active observations as the SCAT satellite is replaced by ASCAT. The Late AMSR-E era saw 110 
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the arrival of the ESA SMOS mission. After the failure of AMSR-E, SMOS observations took on a more prominent 111 

role within the CCI passive microwave framework. Also during the post-AMSR-E the Japanese Space Agency 112 

launched AMSR2 (Wentz et al. 2014), which is considered the replacement for the long lasting AMSR-E mission.  113 

2.2 In Situ Soil Moisture 114 

Direct, in situ comparisons were made between RZSM estimates with in situ data from the International Soil 115 

Moisture Network (ISMN; Dorigo et al., 2011). The ISMN provides access to a host of meteorological and soil 116 

moisture data (at many depths). In this study, we selected soil moisture at two depths. Surface soil (0-10 cm) and 117 

RZSM (20-25 cm) moisture was compared to assess the performance of the exponential filter method. In this study 118 

we focused on four networks within CONUS that have been examined in previous studies. Al Bitar et al. (2012) 119 

conducted an extensive evaluation of SMOS data using two networks we utilized: the Soil Climate Analysis 120 

Network (SCAN; 20.32 cm) and SNOwpack TELemetry (SNOTEL; 20.32 cm). Additionally, we obtained soil 121 

moisture observations from two other CONUS networks: the U.S. Department of Energy Atmospheric Radiation 122 

Measurement (ARM; 25 cm) program (Jackson et al 1999) and the U.S. Climate Reference Network (USCRN; 20 123 

cm; Bell et al., 2013). Complete ARM observations only existed from eras 1 to 4 and USCRN data was available for 124 

only era 5. In situ values were aggregated to a daily time step (based on UTC time) that matched the surface 125 

satellite-based soil moisture product described below. Figures 1 and 2 show the location of the stations selected 126 

across the five eras.  127 

The ARM network used the Campbell Scientific1 229-L heat dissipation matric potential sensor to estimate 128 

soil moisture (Reece 1996). Calibration of this method was based on comparison of matric potential with soil water 129 

release curves (Klute, 1986). Conversely, the SCAN, SNOTEL, and USCRN networks all used a Stevens Water 130 

Hydra Probe (Schaefer et al., 2007; Bell et al., 2013). Seyfried et al. (2005) described the calibration approach and 131 

how the dielectric measurements from the Hydra Probe sensor were converted into volumetric soil moisture 132 

measurements.  133 

2.3 Surface Satellite-Based Soil Moisture 134 

This study was supported by four surface (5 cm) soil moisture products, three of which came from the CCI program. 135 

We used the CCI Passive, CCI Active, and CCI Combined products. The harmonization process involved in the 136 
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creation of these products was described by Liu et al. (2012) and these datasets are available on-line 137 

(http://www.esa-soilmoisture-cci.org/node/145). In addition, we also utilized stand-alone data from the AMSR-E 138 

mission during eras 2-4. In this study we acquired the version produced by the Land Surface Parameter Model 139 

(LPRM; Owe et al. 2008; ftp://hydrol.sci.gsfc.nasa.gov/data/s4pa/WAOB). All of these satellite soil moisture 140 

products were produced at a daily time step with a 0.25o spatial resolution. 141 

2.4 Other Datasets 142 

Several other dataset were used in an ancillary role. Air temperature and precipitation data were obtained from 143 

Parameter elevation Regression on Independent Slopes Model (PRISM; Daly et al. 1994) from grid cells (4 km 144 

spatial resolution) co-located with examined in situ sites (PRISM Climate Group 2015). These data were used to 145 

screen dates below freezing and with significant precipitation data, as suggested by (Dorigo et al., 2011), to enhance 146 

quality control.  147 

 In addition, Normalized Difference Vegetation Index (NDVI) values (Tucker 1979) were used to help 148 

constrain the only unknown in the exponential filter, the characteristic time length and was derived from Moderate 149 

Resolution Imagining Spectroradiometer (MODIS) data. The version of MODIS (MOD13Q1) used near-infrared 150 

reflectances that were atmospherically corrected to mask water, clouds, aerosols and cloud shadows. Datasets were 151 

provided in a sinusoidal grid with a 250 m resolution and an average of nine pixels around each in situ station were 152 

used to calculate a global average NVDI for each era.         153 

3 Methods 154 

3.1 Initial Station Filtering 155 

To ensure selection of the highest quality in situ stations, we applied two criteria in our initial station selection. The 156 

first criterion involved the amount of missing data within a candidate station. Sites that had an excessive number of 157 

missing data, a total of over 20 days per year, were rejected. A second criterion related to a fundamental assumption 158 

of the exponential filter method, which is that there is a hydrologic connection between the surface and root zone 159 

horizons. One would expect that deeper within the profile there would be a greater lag in response. Therefore, a 160 

linear correlation coefficient (r) between surface measurements (generally made at 5 cm) and lagged root zone data 161 

from 20 to 25 cm depth was made. Root zone lag was calculated between 1 to 40 days and the day with the highest 162 
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correlation coefficient was selected. Stations whose maximum lagged correlation coefficient (r) fell below 0.5 were 163 

rejected. Qiu et al. (2014) used a similar selection criterion in their study. 164 

3.2 Exponential Filter 165 

Wagner et al. (1999) originally developed the exponential filter and Albergel et al. (2008) refined this approach with 166 

a more robust recursive version of this method. This version provided an estimate of a soil wetness index (SWI) 167 

within the root zone. This index standardized RZSM based on the total range of values recorded by the in situ 168 

dataset. The recursive formulation provided a predictor of RZSM at time (tn), which in this study was given in days, 169 

and was derived as: 170 

 171 
SWImn  =  SWImn(n-1) +  Kn  [ ms (tn)  - SWImn(n-1  ]     (1) 172 

  173 
where SWImn(n-1) represented the estimated RZSM at time tn-1, ms (tn) was the surface soil moisture estimate based 174 

on either CCI products or AMSR-E retrievals, and Kn was the gain at time tn determined with: 175 

𝐾𝐾𝑛𝑛 = 𝐾𝐾𝑛𝑛−1

𝐾𝐾𝑛𝑛−1+ 𝑒𝑒
𝑡𝑡𝑛𝑛−𝑡𝑡𝑛𝑛−1

𝑇𝑇
           (2) 176 

  177 
where T represented the timescale of soil moisture variation in days. At the beginning of each era and after 178 

excessively large gaps in ms (tn) data (> 12 days) the filter was initialized with SWIm(1) = ms (tn) and Kn1 set to one. 179 

Results from a data denial experiment described below provided support for the selection of 12 days as an 180 

appropriate timescale to reset the filter. The prime advantage of the exponential filter was that the only unknown 181 

was T. 182 

3.3 Objective Metrics 183 

Direct comparisons were made between CONUS in situ stations that represented a long-time series. While it is true 184 

that soil moisture measurements exhibit a high degree of spatial variability over a wide range of spatial scales from 185 

field plot to watershed (e.g, Western et al., 2004; Wilson et al., 2004; Brocca et al., 2007) temporal variation is 186 

much more muted. Temporal stability is a concept fully rooted in soil science (Vachaud et al., 1985; Martinez-187 

Fernandez and Ceballos, 2003). Therefore, the approach of this study was to use standard objective metrics such as 188 

correlation to describe the relationship between (coarse-scale) of root zone soil moisture estimates based on the 189 
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exponential filter and (point-scale) in situ measurements. Other temporal statistics included: bias, Nash-Sutcliffe 190 

coefficients (NS), and root mean square error (RMSE, in volumetric soil moisture).  Each of these metrics has their 191 

own utility as discussed in the paper below. 192 

3.4 Calibration of Topt 193 

Albergel et al. (2008) noted no significant correlation between soil properties and the optimal timescale of soil 194 

moisture variation (TOpt). Therefore, they constrained this parameter by optimizing T based on the NS metric, an 195 

approach also applied by Ford et al. (2014). However, Albergel et al. (2008) also noted a weak relationship between 196 

T with climate. Specifically, a linkage between increased temperatures and, hence, soil evaporation (not 197 

transpiration). A lower TOpt was representative of a faster response of SWI present in areas with a higher 198 

evaporational demand. This conjecture was consistent with a relationship developed by Qiu et al. (2014) using mean 199 

NDVI values at in situ sites.  200 

 In this study we used two approaches to determine TOpt. The first method optimized TOpt at a time in which 201 

the RMSE is minimized. This was essentially the same approach as finding a maximum NS value. RMSE was 202 

calculated between 1 to 68 days at a one-day increment. Sites that converged on the upper 68-day bound were 203 

rejected. Qiu et al. (2014) used a similar upper bound as a means of selecting SCAN sites for their study. 204 

The second approach used the NDVI formulation from Qiu et al. (2014) to calculate TOpt. This relationship 205 

is given as: 206 

 207 
TOpt  =  [ -75.263  X  NDVI ] + 68.171      (3) 208 

3.5 In Situ Station Filtering and Data Denial Experiment 209 

To ensure that the exponential filter was effective in producing a RZSM estimate, the ms (tn) term was set based on 210 

surface (5 cm) in situ data instead of satellite data. Normally grid based satellite surface moisture estimates are used 211 

to drive the exponential filter. However, to establish a filter based on the quality of in situ data an initial estimate of 212 

RZSM is determined based on surface in situ data at the 5 cm level. Initial RZSM estimates with a NS value less 213 

than 0.50, which is a common threshold for defining a satisfactory match between in situ and simulated hydrologic 214 

data (Moriasi et al., 2007), were rejected. This filter removed many of the poor performing outliers (NS <  -1.00) 215 
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from consideration. Table 1 describes the issues with the remaining poor performing outliers that lingered after this 216 

in situ based filtering approach. 217 

 Use of surface (5 cm) in situ data also supported a data denial experiment that gauged how the filter’s 218 

performance was impacted by gaps in the ms (tn) time series. This experiment focused on the SCAN network during 219 

era 3 (2005-2008). Time series were altered to include only data at 2, 5, 8, and 11-day intervals. This experiment 220 

was based on the 32 out of 42 sites that had in situ based NS in excess of 0.50; i.e. the sites that survived this 221 

filtering process. Both surface (5 cm) in situ and satellite (AMSR-E) were used in this experiment. 222 

3.6 Spurious Data Filtering 223 

After calculation of rescaled SWI values for all four satellite products at each in situ station, a final series of filters 224 

were applied to remove any spurious results following the qualify control guidelines articulated by Dorigo et al. 225 

(2013). Surface temperature and precipitation data from co-located PRISM grid cells flagged problematic dates 226 

within the time series of each dataset. Days in which the minimum air temperature was less than 0 oC were removed 227 

from the final rescaled SWI dataset. Satellite soil moisture retrieval were particularly fraught with difficulty under 228 

freezing conditions (Dorigo et al., 2011). Likewise precipitation can be problematic and days with greater than 1 229 

mm / day were excised following the guidance of (Dorigo et al., 2013).  Three additional flags related to the quality 230 

of the in situ data were applied. Days with values in excess of the porosity reported by the ISMN were expunged 231 

from the rescaled SWI dataset. Likewise, days that recorded the same value (plateaus) or zero were deemed spurious 232 

and removed. Also, if the final filtered rescaled SWI dataset consisted of less than 100 days this dataset was rejected 233 

following the guidance of Dorigo et al. (2013). Finally, SWI based estimates in which NS < -1.00 were rejected as 234 

outliers. A detailed discuss of these outliers is given below.  235 

4 Results 236 

Figure 3 shows the results of the data denial experiment in which both in situ and satellite data (AMSR-E) was used 237 

at the surface. Note a baseline performance for in situ dataset has an average NS values close to 0.7, which was 238 

almost identical to results based on in situ surface soil moisture datasets in which every other day was withheld. 239 

Even in datasets with every four out of five dates withheld there was only a slight drop in performance. This result 240 

underscored the ability of the exponential filter to effectively cope with datasets that have significant gaps. Average 241 
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NS values fell to 0.5 only when over ninety percent of the surface soil moisture dataset was withheld and 242 

measurements from only every eleventh day were used. Data denial experiment using AMSR-E data to drive the 243 

filter yielded a similar drop-off in performance as the number of withheld days increased. 244 

Figures 1 and 2 show lag correlation (r) between in situ surface (5 cm) and RZSM (20 to 30 cm) during the 245 

five eras. ARM sites clustered in Oklahoma and Kansas had higher correlation coefficients during era 1 (Network 246 

Average r = 0.864) and a drop in this metric during eras 2 to 4 (Network Average r = 0.793 to 0.796). SCAN sites 247 

exhibited correlation coefficients that varied spatially. In general, better performances were noted from eastern 248 

(Network Average r = 0.751 to 0.872) and central sites (Network Average r = 0.812 to 0.874). Western sites had 249 

slightly lower r values (Network Average r = 0.699 to 0.770). Notable outliers were present for the stations in 250 

Montana during eras 4 and 5 (Fig. 2) that could account partly for the poorer performance noted during these eras. 251 

SNOTEL stations were concentrated in western CONUS and had consistently high correlation coefficients (Network 252 

Average r = 0.828 to 0.865). Finally the USCRN sites examined during era 5 generally had better r values in eastern 253 

and central CONUS (Network Average r = 0.846 to 0.882) as opposed to the west (Network Average r = 0.768). 254 

 The remainder of this section focuses on the results from the exponential filter driven by the four satellite 255 

products. The TOpt and lagged r-values discussed are based on results that have a low absolute bias (± 10%). As 256 

might be expected, the TOpt values from the NDVI approach had a much more limited range of values compared 257 

with TOpt values derived using the optimization approach (Tables 2 to 5). From the ARM network average TOpt based 258 

on the NDVI approach ranged from 32 to 36 days whereas optimization produced much greater variation (4 to 32 259 

days; Table 2). At SCAN the NDVI approach yielded a broader range of average era TOpt (28 to 46 days; Table 3). 260 

But again optimization produced more variable TOpt values (9 to 39 days; Table 3). A similar pattern was noted at 261 

SNOTEL sites. The NDVI approach yielded higher network average era TOpt values (42 to 45 days) versus the more 262 

variable and lower results from the optimization method (17 to 36 days; Table 4). Finally, USCRN sites from era 5 263 

exhibited a broad range of values for both approaches (NDVI = 30 to 55 days; Optimization = 9 to 28 days; Table 264 

5).  265 

Tables 2 to 5 show results from the direct correlation between in situ RZSM and SWI based estimates 266 

generated from the four satellite products. Network average values are excluded in this discussion if there were less 267 

than three measurements within an era for a network. Generally, but not always, the optimization approach yielded 268 

higher lagged r-values than NDVI. Interestingly, in the ARM network in 5 out of 14 instances the NDVI approach 269 
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yielded network average r values that were greater than those obtained from the optimization method (Table 2). 270 

ARM sites from the central Great Plains had network average r values based on optimization that ranged from 0.450 271 

to 0.707 across eras 1 to 4; whereas the NDVI approach yielded a lower and broader variation in r values (0.323 to 272 

0.704; Table 2).  273 

For SCAN sites comparisons were made only for eras 2 to 5 (Table 3). Era 1 was excluded in this 274 

comparison due to limited data availability during this period. Network average r-values based on optimization 275 

(0.458 to 0.720; Table 3) generally outperform those based on the NDVI approach (0.428 to 0.615; Table 3). 276 

Additionally, when examined from a geographic prospective, western CONUS sites had slightly higher r values 277 

based on optimization (0.477 to 0.823) than those from either the east (0.332 to 0.777) or central regions (0.492 to 278 

0.717). 279 

SNOTEL stations from the intermountain west showed the greatest variability. Some sites recorded r-280 

values below 0, but there were also quite a few sites with high correlation coefficients (> 0.75). However, in general, 281 

network average r-values were lower in SNOTEL (optimization = 0.370 to 0.572; NVDI = 0.228 to 0.590) than at 282 

SCAN western sites (Table 4). Finally, the data from USCRN sites during era 5 had higher network average r-values 283 

in central sites versus western CONUS (Table 5). 284 

NS values across the five eras were depicted in Figs. 4-6. Stations with low absolute bias (± 10%) 285 

consistently outperformed stations with high bias within all networks and during all eras. This was true for both the 286 

optimization and NDVI (data not shown) approaches to constraining T. Not surprisingly the optimization approach 287 

generally outperformed the NDVI method. Also, the four satellite products had quite consistent results and did not 288 

exhibit any clear temporal trends. All NS and RMSE network averages described below were based on the 289 

optimization approach to constraining T and had a low absolute bias. Figure 4 showed NS results from the ARM and 290 

USCRN networks. Network average NS values for ARM ranged from -0.1 to 0.3, similar to the results from the 291 

USCRN network (0.2 to 0.3). Network average NS values from the SCAN and SNOTEL networks were shown in 292 

Figs. 5 and 6, which were slightly higher (0.1 to 0.5).  293 

 Figures 7-9 depicted RMSE values again across the five eras. In many respects RMSE mirrors NS as a 294 

performance metric. Like NS stations, RMSE values with a low absolute bias outperformed those with high bias. 295 

However, the difference between low and high bias datasets was generally not as pronounced for the RMSE metric 296 

as it was for NS. But like with NS, RMSE results showed no discernable temporal trends. RMSE values from the 297 
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ARM and USCRN networks were illustrated in Fig. 7. Network average RMSE values for ARM ranged from 0.02 to 298 

0.04 and were significantly lower than values from the other networks examined in this study. USCRN network 299 

average RMSE values ranged from 0.04 to 0.05 (Fig. 7). Figure 8 illustrated results from the SCAN network and 300 

network average RMSE values were similar to USCRN sites (0.04 to 0.06). Finally, SNOTEL RMSE results (Fig. 9) 301 

were higher than all other networks (0.05 to 0.07). 302 

5 Discussion and Conclusions  303 

A long-standing goal of the soil remote sensing community has been to develop techniques that can observe changes 304 

in RZSM. Regrettably, the technology had not yet progressed to support a global RZSM product based only on 305 

remote sensing retrievals. The use of land surface models such as the community NOAH model (Chen et al., 1996), 306 

Global Land Data Assimilation System (GLDAS; Rodell et al., 2004), and European Centre for Medium-Range 307 

Weather Forecasts (ECMWF) Re-analysis products (Uppala et al., 2005) have been used to fill this gap in recent 308 

years. These platforms have become popular and provide an estimate of root zone soil moisture that has been 309 

applied to field scale studies (Albergel et al. 2012; Blankenship et al. 2016; Kedzior et al. 2016). In addition, another 310 

approach that has been suggested is based on thermal infrared based remote sensing (e.g. Hain et al., 2011). 311 

Besides ease of use the exponential filter methodology is an attractive alternative because it leverages 312 

existing remotely sensed soil moisture platforms. As such, this approach is not hindered by the incipit assumptions 313 

built in to every modeling platform and relies purely on observational data. Given the potential utility of the 314 

exponential filter approach, a detailed analysis of the potential errors associated with the method is in order. There 315 

are four main sources of error. Two of these errors are associated with the SWI estimate and included:  (1) the 316 

unsuitable of the exponential filter at a given site and (2) retrievals errors in the surface soil moisture dataset. The 317 

other two errors are not related to the actual SWI estimate but instead are errors in the independent datasets that 318 

were applied to verify the SWI estimate at the scale of the 0.25o satellite grid. These errors included: (3) issues with 319 

in situ datasets (Dorigo et al. 2011, 2013) and (4) non-representativeness of a point site when compared with the 320 

large (0.25o) footprint of a surface soil moisture grid used to drive the filter (Crow et al. 2012). A significant quality 321 

control measure involved driving the filter with surface in situ instead of satellite soil moisture data. Stations that 322 

scored a NS < 0.5 based on this approach were rejected as not suitable. At these sites perhaps the fundamental 323 

assumption of the exponential filter method that there was hydrologic equilibrium between and the surface and root 324 
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zone was violated. Therefore, the gross errors recorded at some sites cannot be ascribed to issues with the 325 

exponential filter and the data denial experiment demonstrated the robustness of this method at least in certain 326 

instances (Fig. 3).  327 

Analysis of poor performing outliers (NS < 1.00) provided additional insights into how the exponential 328 

filter can fail at some sites (Table 1). Within the ARM network all outliers could be attributed to in situ data issues 329 

such as spikes, breaks, anomalous high values that exceed soil porosity, anomalous low values at zero, and extended 330 

plateaus (Dorigo et al. 2013). An example of such a clearly flawed in situ dataset is shown in Fig. 10 a. Within the 331 

SNOTEL network there was more of a mix in error type (Table 1). Besides in situ data issues, another significant 332 

source of error was the limited number of days in some of the final SWI datasets. Following the guidance of Dorigo 333 

et al. (2010) SWI datasets with less than 100 days were rejected. However, based on observations in this study, 334 

significant issues of representativeness were noted when there were less than 400 days (Fig. 10 b). The high altitude 335 

of many SNOTEL sites resulted in a longer freezing season during which a greater number of days were filtered out. 336 

There were some sites with in situ data issues in the SCAN network (Table 1). However, many of the outliers also 337 

were caused by either SWI values that lacked the dynamic range of the in situ dataset (Fig. 10 c) or SWI values that 338 

had significant timing offsets compared with in situ RZSM observations (Fig. 10 d). These issues were the result of 339 

either site non-representativeness or errors in surface soil moisture retrievals. Finally, USCRN sites exhibited a 340 

similar mix of errors as noted in the SCAN network (Table 1). 341 

A consistent result noted in this study was the impact of bias on other performance metrics. Consistently 342 

better results for all metrics were noted (Tables 2-5; Figs. 4-9) when there was a low absolute bias (within 10%) 343 

versus SWI datasets that had a high absolute bias (>10%). Additionally, this observation was observed for SWI 344 

values produced with both approaches to constrain T (minimization of RMSE and NDVI approach). The impact of 345 

bias on standard objective metrics was a focus of temporal stability analysis (Vachaud et al., 1985; Martinez-346 

Fernandez and Ceballos, 2003). Sites with little variation in bias yielded more robust comparisons with remote 347 

sensing data (Starks et al., 2006); a result that was confirmed in this study across four distinct in situ soil moisture 348 

networks and satellite products. 349 

Interestingly, the results observed in this study were more impacted by the in situ network than the surface 350 

satellite product used to drive the exponential filter. In terms of the NS metric, SCAN, SNOTEL, and USCRN 351 

outperformed ARM (Figs. 4-6). The NS metric seemed to have a greater utility in indentifying outliers than the 352 
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RMSE metric. This was because it ranged from 1.00 to potentially -∞, unlike RMSE, which ranged in this study 353 

from only 0 to 0.14. 354 

Conversely, when considering the RMSE metric, ARM sites yielded superior scores compared with SCAN, 355 

SNOTEL, and USCRN (Figs. 7-9). Within the ARM network average RMSE was less than 0.04, which is the 356 

baseline value for accuracy designed for many satellite soil moisture missions (e.g. Kerr et al. 2001; Entekhabi et al., 357 

2010). SCAN and USCRN were slightly above this guideline and were similar to RMSE values noted in previous in 358 

situ/satellite soil moisture comparisons (e.g. Brocca et al., 2010; Jackson et al., 2010, 2012; Al Bitar et al., 2012). 359 

According to the RMSE metric SNOTEL sites performed the worst and was significantly above the 0.04 360 

performance target. 361 

Perhaps the most interesting result from this study was that the performance metrics in each in situ network 362 

did not vary over time. Given that almost two decades of data examined, this finding is particularly noteworthy. 363 

Therefore SWI estimates of RZSM produced by the exponential filter using CCI datasets can be leveraged for long-364 

term, perhaps even multi-decadal, climate studies (Manfreda et al., 2011). Another fruitful line of future research 365 

could compare exponential filter estimates of RZSM with those generated by land surface models. With the 366 

proliferation of space-based remote sensing platforms and the continued development of in situ monitoring networks 367 

the duration of RZSM time series will only grow. As such, the approaches outlined in this work can provide the 368 

cornerstone to support future assessments of long-term trends in RZSM, which is an essential climate variable.  369 
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 500 

TABLES 501 

Table 1. Number of poor performing (NS < 1.00) outliers for all four satellite products. 502 

RMSE Optimization 503 

 ARM SCAN SNOTEL USCRN 

In situ Data 17 3 15 1 

Insufficient SWI 0 1 14 0 

Lack of Range 0 11 0 3 

Timing Issues 0 0 9 0 
 504 

NDVI Approach 505 

 ARM SCAN SNOTEL USCRN 

In situ Data 22 16 32 5 

Insufficient SWI 0 3 44 0 

Lack of Range 0 17 15 8 

Timing Issues 0 6 5 3 
 506 

507 
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Table 2. Average lagged correlation factor (r) and TOpt between SWI based and in situ soil 508 

moisture at the 25 cm depth for the ARM network. Standard derivation is indicated in 509 

parentheses.  510 

 511 

Optimization Approach – Low Bias 512 

             AMSR-E    CCI-Combined     CCI-Passive    CCI-Active 513 

Era n r value Topt n r value Topt n r value Topt n r value Topt 

1 --- -------- ---- 14 0.471  
(0.249) 

30 
(19) 4 0.614  

(0.131) 
25 

(29) 9 0.450  
(0.193) 

26 
(13) 

2 9 0.587  
(0.080) 

4 
(1) 10 0.491  

(0.136) 
9 

(4) 10 0.554  
(0.103) 

7 
(6) 11 0.493 

(0.153) 
17 
(7) 

3 12 0.589  
(0.148) 

7 
(3) 12 0.520  

(0.156) 
12 

(10) 12 0.615 
(0.165) 

8 
(4) 12 0.460  

(0.165) 
13 

(10) 

4 4 0.666  
(0.053) 

32 
(10) 3 0.707  

(0.081) 
10 
(4) 2 0.649 

(0.011) 
12 
(1) 1 0.823 5 

 514 

NDVI Approach– Low Bias 515 

             AMSR-E    CCI-Combined     CCI-Passive    CCI-Active 516 

Era n r value Topt n r value Topt n r value Topt n r value Topt 

1  -------- ---- 17 0.439 
(0.241) 

36 
(3) 9 0.480 

(0.171) 
36 
(2) 12 0.414 

(0.172) 
36 
(4) 

2 7 0.622 
(0.156) 

35 
(3) 11 0.567 

(0.172) 
34 
(4) 9 0.642 

(0.132) 
34 
(4) 13 0.484 

(0.154) 
32 
(3) 

3 13 0.559 
(0.204) 

34 
(2) 12 0.437 

(0.179) 
35 
(3) 10 0.645 

(0.137) 
34 
(3) 12 0.341 

(0.197) 
34 
(3) 

4 5 0.666 
(0.053) 

32 
(6) 3 0.704 

(0.004) 
34 
(2) 3 0.665 

(0.542) 
34 
(2) 7 0.323 

(0.184) 
32 
(3) 

 517 

518 
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 Table 3. Average lagged correlation factor (r) and TOpt between SWI based on optimization and 519 

in situ soil moisture at the 20.32 cm depth for the SCAN network (Figures 1 and 2). Standard 520 

derivation is indicated in parentheses.  521 

 522 

Optimization Approach – Low Bias 523 

             AMSR-E     CCI-Combined    CCI-Passive     CCI-Active 524 

Era n r value Topt n r value Topt n r value Topt n r value Topt 

1 --- -------- ---- 1 0.817 19 1 0.691 1 3 0.458 
(0.323) 

22 
(10) 

2 4 0.691 
(0.157) 

39 
(19) 7 0.598 

(0.157) 
27 

(16) 2 0.661 
(0.007) 

16 
(9) 7 0.519 

(0.147) 
15 
(6) 

3 17 0.596 
(0.129) 

10 
(7) 19 0.556 

(0.164) 
14 

(13) 16 0.556 
(0.184) 

9 
(5) 17 0.521 

(0.140) 
17 

(17) 

4 14 0.697 
(0.096) 

15 
(14) 16 0.698 

(0.155) 
19 

(15) 10 0.720 
(0.176) 

15 
(12) 16 0.642 

(0.226) 
17 

(16) 

5 --- -------- ---- 17 0.572 
(0.183) 

16 
(15) 11 0.472 

(0.192) 
21 

(14) 15 0.589 
(0.195) 

14 
(14) 

 525 

NDVI Approach– Low Bias 526 

              AMSR-E    CCI-Combined    CCI-Passive     CCI-Active 527 

Era n r value Topt n r value Topt n r value Topt n r value Topt 

1 --- -------- ---- 2 0.678 
(0.199) 

32 
(6) 2 0.747 

(0.096) 49 4 0.463 
(0.282) 

40 
(10) 

2 6 0.554 
(0.198) 

34 
(16) 7 0.541 

(0.179) 
30 

(12) 1 0.330 20 10 0.505 
(0.171) 

28 
(7) 

3 14 0.596 
(0.111) 

31 
(10) 15 0.480 

(0.193) 
34 

(11) 15 0.613 
(0.095) 

36 
(11) 15 0.471 

(0.187) 
31 

(10) 

4 16 0.573 
(0.242) 

37 
(15) 20 0.585 

(0.223) 
39 

(15) 14 0.615 
(0.238) 

39 
(15) 20 0.608 

(0.226) 
40 

(15) 

5 --- -------- ---- 19 0.518 
(0.220) 

39 
(13) 15 0.428 

(0.238) 
46 

(11) 26 0.469 
(0.237) 

41 
(13) 

 528 

 529 
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Table 4. Average lagged correlation factor (r) and TOpt between SWI based on optimization and 531 

in situ soil moisture at the 20.32 cm depth for the SNOTEL network. Standard derivation is 532 

indicated in parentheses.  533 

 534 

Optimization Approach – Low Bias 535 

             AMSR-E    CCI-Combined     CCI-Passive    CCI-Active 536 

Era n r value Topt n r value Topt n r 
value 

Topt n r 
value 

Topt 

2 5 0.572 
(0.311) 

17 
(15) 2 0.600 

(0.034) 
10 
(1) 2 0.750 

(0.054) 
14 
(7) 3 0.509 

(0.156) 
36 

(13) 

3 39 0.463 
(0.264) 

20 
(15) 17 0.513 

(0.290) 
27 

(18) 30 0.461 
(0.293) 

25 
(20) 30 0.370 

(0.317) 
29 

(11) 

4 63 0.508 
(0.299) 

18 
(14) 32 0.491 

(0.353) 
20 

(16) 55 0.522 
(0.302) 

18 
(11) 32 0.522 

(0.379) 
22 

(18) 

5 --- -------- ---- 5 0.527 
(0.189) 

25 
(13) 12 0.412 

(0.252) 
26 

(17) 8 0.534 
(0.319) 

27 
(21) 

 537 

NDVI Approach– Low Bias 538 

             AMSR-E    CCI-Combined     CCI-Passive    CCI-Active 539 

Era n r value Topt n r value Topt n r value Topt n r value Topt 

2 2 0.678 
(0.197) 

44 
(13) 1 0.438 49 4 0.584 

(0.102) 
45 
(8) 4 0.444 

(0.362) 
44 
(7) 

3 44 0.367 
(0.374) 

44 
(6) 28 0.313 

(0.395) 
44 
(7) 43 0.334 

(0.386) 
44 
(6) 45 0.327 

(0.337) 
44 
(5) 

4 71 0.425 
(0.367) 

43 
(6) 33 0.385 

(0.491) 
43 
(7) 61 0.451 

(0.341) 
44 
(7) 41 0.228 

(0.529) 
44 
(6) 

5 --- -------- ---- 11 0.425 
(0.216) 

44 
(7) 9 0.357 

(0.318) 
43 
(5) 10 0.590 

(0.268) 
42 
(6) 

 540 

 541 
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Table 5. Average lagged correlation factor (r) and TOpt between SWI based on optimization and 543 

in situ soil moisture at the 20 cm depth for the USCRN network during era 5. Standard derivation 544 

is indicated in parentheses. Sites are divided by region (east, central, west) as indicated on Figure 545 

2. 546 

 547 

Optimization Approach – Low Bias 548 

            CCI-Combined CCI-Passive        CCI-Active 549 

Region n r value Topt n r value Topt n r value Topt 
East 1 0.105 4 -- -------- ---- 1 0.486 15 

Central 13 0.594 
(0.185) 

9 
(8) 6 0.707 

(0.086) 
17 

(19) 11 0.607 
(0.126) 

6 
(3) 

West 1 0.857 11 4 0.406 
(0.125) 

28 
(21) 3 0.540 

(0.389) 
9 

(1) 
 550 

NDVI Approach– Low Bias 551 

           CCI-Combined CCI-Passive         CCI-Active 552 

Region n r value Topt n r value Topt n r value Topt 

East 2 0.388 
(0.122) 1 1 0.071 25 2 0.410 

(0.133) 21 

Central 12 0.521 
(0.231) 

30 
(10) 7 0.605 

(0.194) 
35 
(9) 7 0.534 

(0.176) 
25 
(7) 

West 3 0.209 
(0.068) 

36 
(20) 4 0.342 

(0.128) 
45 

(20) 3 0.087 
(0.122) 

55 
(5) 

 553 

 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
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Figure Captions 562 

Figure 1. Locality map of examined in situ stations (ARM - X; SCAN - ∗; SNOTEL - +) with (a) era 1, (b) era 2, 563 
and (c) era 3. 564 
 565 
Figure 2. Locality map of examined in situ stations (ARM - X; SCAN - ∗; SNOTEL - +) with (a) era 4 and (b) era 5. 566 
During era 5 (X) represents USCRN instead of ARM stations. 567 
 568 
Figure 3. Box plot of data denial experiment from the SCAN network during era 3 (2005-2008). Results for day 1 569 
represent baseline data for the exponential filter driven by surface soil moisture data (in situ data – stars; low 570 
absolute bias RMSE optimized AMSR-E – circles). Other time series were altered to include only data at 2, 5, 8, and 571 
11-day intervals.  572 
 573 
Figure 4. Box plots that depict the NS metric for the ARM (eras 1 to 4) and USCRN (era 5) networks. Results for 574 
high absolute bias RMSE optimized datasets are squares, low absolute bias RMSE optimized datasets are circles, 575 
and low absolute bias NVDI datasets are triangles. 576 
 577 
Figure 5. Box plots depicting NS metric for the SCAN network. Symbols are as in Figure 4. 578 
 579 
Figure 6. Box plots depicting NS metric for the SNOTEL network. Symbols are as in Figure 4. 580 
 581 
Figure 7. Box plots depicting RMSE metric for the ARM (eras 1 to 4) and USCRN (era 5) networks. Symbols are as 582 
in Figure 4. 583 
 584 
Figure 8. Box plots depicting RMSE metric for the SCAN network. Symbols are as in Figure 4. 585 
 586 
Figure 9. Box plots depicting RMSE metric for the SNOTEL network. Symbols are as in Figure 4. 587 
 588 
Figure 10. Selected time series associated with poorly performing (NS < 1.00) outliers with in situ data as solid gray 589 
and SWI estimates in dashed black. (a) Shows an example of problematic in situ data. (b) Is an example where there 590 
was insufficient SWI data. (c) Illustrates an SWI dataset that lacked the dynamic range present in the in situ data. (d) 591 
Depicts a discrepancy in timing between SWI and in situ datasets. 592 
 593 
 594 
 595 
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FIGURE 1 619 
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FIGURE 2 622 
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